SOIL IMPROVEMENT CHALLENGES ON ALLUVIAL ZONES

28-29 January 2019 Vila Franca de Xira, Portugal

Presentations e-Book Volume 2

Edited by

Alexandre Pinto, António A. Cristóvão, António Alberto Correia, António Gomes Correia, Baldomiro Xavier, Eduardo Fortunato, Isabel Pinto, Jorge Barros, José Luis Antunes, José Mateus de Brito, José Neves, Madalena Barroso, Pedro Guedes Melo, Rui Tomásio, Vieira Simões

Comissão Portuguesa de Geossintéticos

Support

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil Improvement Challenges on Alluvial Zones

Volume 2

ISBN 978-989-54038-3-7

DOI: http://doi.org/10.24849/spg.cpgt.2019.03

ORGANIZATION

Comissão Portuguesa de Geotecnia nos Transportes

Portuguesa de Geossintéticos

SUPPORT

ORDEM DOS ENGENHEIROS

Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

CONTENTS

MODULE II - Latest Soil Improvement Techniques

II.1	Soil improvement by jet grouting for the construction of the Access to the Barcelona Airport Application of the recent technologies <i>Goran Vukotic (KELLER)</i>	350
II.2	Successful Menard Vacuum trial area in the New Mexico City Airport Jérôme Racinais (MENARD)	450
II.3	Challenges in ground improvement research Jimmy Wehr (UNIVERSITY OF ERFURT)	480
11.4	Application of Geotextile Encased Columns (GECs) in embankment over soft soils Patricia Amo Sanz (HUESKER)	507
II.5	Application of Geotube [®] technology in the encapsulation of landfill contaminated soils: case of maritime-port reference work <i>Emanuel Ferreira (GEOSIN/TENCATE)</i>	520
II.6	The use of 16 ton CDC compaction for the ground improvement of the transportation route of a 13.500 ton railway bridge <i>Jeroen Dijkstra (COFRA)</i>	547

Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

CONTENTS

MODULE II - Latest Soil Improvement Techniques (cont.)

II.7	Reinforcement and Ground Improvement GEOPIER [®] Solutions Javier Moreno (TERRATEST)	572
II.8	Compaction grouting - A technology of soil improvement (almost) unknown in Portugal José Luiz Antunes (KELLER)	588
11.9	Tension stress treatments with recourse to semi-rigid inclusions by solo-cimento collisions - SPRINGSOL Procedure José Luis Arcos (RODIO)	614
II.10	Biocementation by Biocalcis, from design to site implementation Annette Esnault (SOLETANCHE-BACHY), Jorge Paulino (RODIO)	649
II.11	Anchored high performance turf reinforcement mat for slope and channel stabilisation Randy Thompson (PROPEX Operating Company)	668

Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

MODULE II Latest Soil Improvement Techniques

ORGANIZATION

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

SUPPORT

ORDEM DOS ENGENHEIROS

Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Soil improvement by jet grouting for the construction of the Access to the Barcelona Airport Application of the recent technologies

Goran Vukotić

Keller

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

350

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• JET GROUTING:

- Introduced to the field of geotechnical engineering more than 40 years ago.
- It primarily acts in the ground either as a mean of stabilization or as a sealing structure.
- The eroded soil is rearranged and mixed with the cement suspension.
- The result is a structured element or column, which has improved mechanical characteristics compared with the original soil.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• JET GROUTING:

• Different types of jet grouting:

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• JET GROUTING:

- Different types of applications:
 - Sealing structures

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• JET GROUTING:

- Different types of applications:
 - Stabilization and soil improvement
 - Escavation pits
 - New foundation
 - Underpinning

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• JET GROUTING:

• Different types of applications:

- Tunneling

SIGNO	DESCRIPCIÓN
\bigcirc	Jet-grouting horizontal en bóveda (paraguas)
Correspondence of the second	Jet-grouting horizontal en solera.
CHICODALLE	Jet-grouting horizontal en bóveda para emboquilles.
D	Jet-grouting para la estabilización de los hastiales desde la plataforma de excavación.
	Jet-grouting para la estabilización de los hastiales desde fuera de la plataforma de excavación.
Q	Jet-grouting para la estabilización de los hastiales desde fuera de la plataforma de excavación.
0	Barreras jet-grouting para intercepción de subsidencias
\bigcirc	Invecciones jet-grouting en forma de "tienda de campaña", "haima" o "montera"
	Estabilización bóveda mediante inyección de columnas secantes jet-grouting adaptadas a la directriz transversal del túnel.
	Estabilización bóveda mediante inyección de columnas secantes jet-grouting que dan lugar a un macizo (sin cubrir solera)
	Estabilización bóveda mediante inyección de columnas secantes jet-grouting que dan lugar a un macizo (cubriendo solera)
	Estabilización solera mediante inyección de columnas secantes jet-grouting que dan lugar a un macizo (sin cubrir bóveda)
\bigcirc	Jet-grouting horizontal en 360°.
	Tratamiento jet-grouting para tapón de fondo en excavaciones entre pantallas.

(CI12)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil improvement by jet grouting for the construction of the Access to the Barcelona Airport
Application of the recent technologies

KELLER

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• With its famous football team and history as an Olympic city, Barcelona is no stranger to breaking records.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

 Jet grouting project at Barcelona airport is just one more on the list of <u>breaking records</u> for this unique centre of culture and sport.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Started in May 2016 and was completed in April 2018, Keller drilled 279.000 m, jetted 89.000 m and deployed four rigs on double shifts, six days per week.
- This jet grouting project is a record in Spain and it is one of the largest ever performed in Europe.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

LOCATION

LOCATION

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

GENERAL PROJECT DATA

- Spanish Ministry for Public Works
- Railway connection to the Airport
- 4,5 km tunnel (2,8 km TBM)
- New Intermodal Station
- MC: JV Sacyr-Ferrovial-Copcisa
- 40 months execution period

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

GENERAL PROJECT DATA

- Spanish Ministry for Public Works
- Railway connection to the Airport
- 4,5 km tunnel (2,8 km TBM)
- Tunnel: dia. 10,8 m; max. depth 26,0 m
- 13.400 m³ of soil improvement (jet grouting
- 50.000 m² DW
- 316.000 m³ excavation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ACCESS TUNNEL

- 1,8 m dia. colum
- 19.230 m of jet grouting (2,5–5,5 m) sealing slab and struts
- 68.400 m of drilling (15,0-35,0 m)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

RUNWAY AREA

- 1,8 m dia. column
- 17.362 m of jet grouting
- 39.000 m of drilling (15.0-35.0 m)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

INTERMODAL STATION

- 1,8 m dia. column
- 47.400 m of jet grouting (5,5–9,0 m)
- 186.800 m of drilling (28,0-35,0 m)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER

DESIGN

SOIL CHARACTERISTICS JET GROUTING DIAMETER COLUMN DISTRIBUTION – GRID STRUCTURAL ANALYSIS

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

SOIL CHARACTERISTICS

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

SOIL CHARACTERISTICS

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Project initial solution:
 - dia.: 1,20 m
 - Grid: 1,0 x 1,0 m

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Project initial solution:
 - dia.: 1,20 m
 - Grid: 1,0 x 1,0 m
 - Point/Column influence: 0,87 m²
 - Theoretical overlap: 6 cm
 - DEVIATION (VERTICALITY) NO CONSIDERED!

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Project initial solution:
 - dia.: 1,20 m
 - Grid: 1,0 x 1,0 m
 - Point/Column influence: 0,87 m²
 - Theoretical overlap: 6 cm
 - DEVIATION (VERTICALITY) NO CONSIDERED!
 - JGG: min. deviation 1%
 - EN12716: deviation up to 2%

Cabe mencionar, que la separación entre centros que se debe contemplar en el cálculo debe ser menor que la separación máxima posible según el diámetro de influencia elegido. Además, varias normativas recomiendan aplicar el criterio de la desviación mínima a tener en cuenta a tener en cuenta a la hora de diseñar la distribución de columnas

- La normativa japonesa propone considerar 1% como la desvíación mínima.
- La normativa europea EN12716: deviación respecto al aje teórico puede ser hasta 2% para las profundidades de hasta 20 m.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Project initial solution:
 - dia.: 1,20 m
 - Grid: 1,0 x 1,0 m
 - Theoretical overlap: 6
 - Deviation: 0,5%
 - Depth: 20m
 - Overlap: -29 cm

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Project initial solution:
 - dia.: 1,20 m
 - Grid: 1,0 x 1,0 m
 - Theoretical overlap: 6 .
 - Deviation: 0,5%
 - Depth: 20m
 - Overlap: -29 cm

20,0 0,15

1,20

0.5%

0.10 m

1.04 m

1,00 m

0,87 m

0.07 m

1,17 m

1,02 m

-0,29 m

-48%

11%

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Keller solution: KELLER D Keller Cimentaciones, S.L.U. ACCESOS AL AEROPUERTO DE BARCELONA MEJORA DE SUELOS MEDIANTE l, JET GROUTING Figura 4 Disposición de las columnas (Japan Jet Grout Association, 2005) siendo D: Diámetro de influencia ANEXO 2 l1: Espaciamiento transversal l2: Espaciamiento longitudinal PROPIEDADES DEL TERRENO MEJORADO, ELEMENTOS REDUCTORES DE PERMEABILIDAD Y Cabe mencionar, que la separación entre centros que se debe contemplar en el cálculo CONTROL DE VERTICALIDAD debe ser menor que la separación máxima posible según el diámetro de influencia elegido. Además, varias normativas recomiendan aplicar el criterio de la desviación minima a tener en cuenta a tener en cuenta a la hora de diseñar la distribución de columnas EMITIDO PARA REVISIÓN Y 0 21.12.15 MAF JLAG GV APROBACIÓN - La normativa japonesa propone considerar 1% como la desviación mínima. REV FECHA Descripción de la revisión Elaborado Revisado Aprobado - La normativa europea EN12716: deviación respecto al aje teórico puede ser hasta 2% para las profundidades de hasta 20 m. Keller Cimentaciones, S.L.U. CLIENTE: UTE SACYR-FERROVIAL EXPEDIENTE: REV. 377 00150058671-PROPIEDADES Y VERTICALIDAD_V01_151221 1

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Keller solution:
 - dia.: 1,80 m
 - Soil characteristics
 - Depth (up to 40 m)
 - Control deviation/verticality
 - Geometrical efficiency
 - Equipment
 - EXPERIENCE

Arenas Limosas Arenas Limosas sueltas Turba y limos orgánicos Arenas limosas densas Arenas Arcillosas densas Limos de baja plasticidad Arenas Arcillosas densas Arenas Arcillosas densas Arenas Arcillosas densas Arenas de baja plasticidad Arcillas de baja plasticidad Arcillas de baja plasticidad

Arcillas de alta plasticidad

Facilidad para disgregar (Grandes Diámetros)

Suelos de cantos pequeños

Suelos gravosos

Dificultad para desagregar (Pequeños Diámetros)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Keller solution:
 - dia.: 1,80 m (based on experience)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Keller solution:
 - dia.: 1,80 m (based on experience)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DIAMETER

- Keller solution:
 - dia.: 1,80 m (based on experience)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION - GRID

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION - GRID

- Project solution: dia. 1,20 m
- Overlap: 6 cm
- Keller alternative solution: 1,80 m
- Permanent deviation control (incliJet)
- Overlap: 25-35 cm
- Deviation: 0,5-1%!

Figura 7. Control de verticalidad mediante Sistema propuesto.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION - GRID

- Project solution: dia. 1,20 m
- Overlap: 6 cm
- Keller alternative solution: 1,80 m
- Permanent deviation control (incliJet)
- Overlap: 25-35 cm
- Deviation: 0,5-1%!
 - Less critical points
 - Better control
 - Higher final quality

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION - GRID

- Project solution: dia. 1,20 m
- Overlap: 6 cm
- Point/Column influence: 0,87 m²
- Keller alternative solution: 1,80 m
- Permanent deviation control (incliJet)
- Overlap: 25-35 cm
- Point/Column influence: 1,7 m²
- Optimization (production time and total number of columns: > 50%!

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION – STRUCTURAL ANALYSIS

- Technical specifications:
 - UCS: 3,50 Mpa
 - C ≥ 0,50 Mpa
 - E = 1.000 4.000 Mpa
 - Density ≥ 19 kN/m³

ESPECIFICACIONES DEL TAPÓN INFERIOR DE JET-GROUTING
 RESISTENCIA CARACTERÍSTICA DE COMPRESIÓN = 3.50 MPa RESISTENCIA CARACTERÍSTICA DE TRACCIÓN = 0.60 MPa COHESIÓN ≥ 0.50 MPa MÓDULO DE ELASTICIDAD = 1000 MPa - 4000 MPa DENSIDAD ≥ 19 kN/m³

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION – STRUCTURAL ANALYSIS

- Technical specifications:
 - UCS: 3,50 Mpa
 - C ≥ 0,50 Mpa
 - E = 1.000 4.000 Mpa
 - Density ≥ 19 kN/m³

	DEUTSCHE NORM	August 2
	DIN 4093	DIN
ICS 93.020	1	NR DIN EN 12715:2000-10 Ersatz für DIN 4093:1987-09
Bemessung von v Hergestellt mit Dü Design of ground impr	verfestigten Bodenkörpern – isenstrahl-, Deep-Mixing- oder Inje ovement –	ektions-Verfahren
Jet grouting, deep mix Dimensionnement des	ing ar grouting renforcements de sol –	
Colonnes de sol-cime	nt réalisées par jet, colonnes de sol traité o	ou injection
		Gesamtumfang 18 Seite
	· · · · · · · · · · · · · · · · · · ·	
	namenaussonuss deuwesen (nedau) in Un	

\$ KELLER

2SGT20192nd Seminar on Transportation Geotechnics
Soil Improvement Challenges in Alluvial Zones
28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION – STRUCTURAL ANALYSIS

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

COLUMN DISTRIBUTION – STRUCTURAL ANALYSIS

-Result:

- Optimization of the jet grouting sealing slab width
- Optimization of DW

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Various field trial tests were performed:
 - Different areas of the project (tunnel, runway area, intermodal station)
 - Different depths
 - Different soil conditions
- Objective:
 - To verify jet grouting diameter and mechanical characteristics
 - To control and verify deviation range
 - To establish optimum execution parameters (monitor, nozzles, pressure, flow rate, w/c, etc.)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

FIELD TRIAL TESTS

- Acoustic Column Inspector - ACI®

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ELLER

FIELD TRIAL TESTS

- Acoustic Column Inspector - ACI®

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

FIELD TRIAL TESTS

- Acoustic Column Inspector - ACI®

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

FIELD TRIAL TESTS

- Acoustic Column Inspector - ACI®

2nd **Seminar on Transportation Geotechnics** Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

402

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The control of column diameter and strength in Jet Grouting processes and the influence of ground conditions'.

Thomas Kimpritis CID: 00680409 Supervisor: Dr. Jamie Standing Imperial College London, Department of Civil and Environmental Engineering MPhil Thesis: September 2013

Reichweitenbestimmung für Solicrete^R-Produkte Determination of enlargement for Solicrete[®] products

KELLER

Prospekt/Brochure 67-040/E

Acoustic Column Inspector - ACI

Control de diámetro de columnas de Jet grouting -Inspector Acústico de Columnas ACI® (Acoustic Column Inspector)

> Goran Vukotić Keller Cimentaciones, S.L.U.

Enmanuel Carvajal Diaz Keller Cimentaciones, S.L.U.

RESUMEN: Con el objetivo de proporcionar a la técnica de Jet grouting la capacidad de determinar el diámetro de forma precisa, rápiday continua en toda la profundidad del tratamiento, el Grupo Keller ha desarrollado el sistema ACIO (Acoustic Column Inspectori. Este sistema, que consta de unos sensores especiales, nos ofrece la oportunidad no sólo de controlar los diámetros y las dimensiones del terreno mejorado, sino también de optimizar los parámetros de ejecución y los plazos y costos correspondientes a los labores de un campo de pruebas. Asimismo, en suelos estratificados, donde las columnas tienen que ser ejecutadas empleando diversos parametros para lograr una geometría uniforme de acuerdo con la granu-Iometría y consistencial compacidad del terreno a tratar, ACIO nos permite verificar y adoptar los parámetros óptimos en tiempo real para cada una de las capas previstas para la mejora. En el artículo se presenta este sistema novedoso, que se utiliza de manera creciente debido a las numerosas ventajas que representa frenie a otros sistemas de control, especialmente en aquellas zonas donde las columnas del campo de pruebas no pueden ser excavadas debido a su gran profundidad o a la existencia de estacios limitados

PALABRAS CLAVE: Jet grouting, diâmetro, control, ACI®, Inspector Adústico de Columnas.

1. INTRODUCCIÓN

El Jet grouting representa una de las técnicas más versátiles dentro del campo de la mejora del terreno. Los procecimientos de control estableci-dos para este tipo de tratamientos tienen mizar los parámetros de ejecución en tiempo el objetivo de comprobar que los elementos ejecutados, cada columna individual, así como el tratamiento en general, tienen las propiedades con las que se han diseñado. Además de controlar los parámetros de ejecución y resistencia donde las columnas de los campos de prueba no del terreno mejorado, resulta esencial determinar el diámetro o la configuración geométrica fundidad, presencia de nivel freático o limitación del mismo.

A continuación se presenta un nuevo sistema de control de jet grouting, conocido por su acrónimo en inglés, ACI®, Acoustic Column Inspector, desarrollado por el Grupo Keller, con el objetivo de comprobar el diámetro y optireal y de forma precisa, rápida, y en toda la profundidad del tratamiento. Este sistema representa numerosas ventajas frente a otros sistemas de control, especialmente en aquellas zonas pueden ser excavadas debido a su elevada prode espacios.

g.vukotic@keller-cimentaciones.com. Calle Argentina 15, Alcalá de Henares, 28806, Madrid.

CONTROL DE DIA METRO DE COLUMINAS. CE JET GROUTING - INSPECTOR ACÚSTICO DE COLUMINAS ACIV... 1

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The control of column diameter and strength in Jet Grouting processes and the influence of around conditions'.

Thomas Kimpritis CID: 00680409 Supervisor: Dr. Jamie Standing Imperial College London, Department of Civil and Environmental Engineering MPhil Thesis: September 2013

Reichweitenbestimmung für Solicrete^R-Produkte Determination of enlargement for Solicrete^{III} products

KELLER

Prospekt/Brochure 67-040/E

Acoustic Column Inspector – ACI

Control de diámetro de columnas de Jet grouting -Inspector Acústico de Columnas ACI® (Acoustic Column Inspector)

> Goran Vukotić Keller Cimentaciones, S.L.U.

Enmanuel Carvajal Diaz Keller Cimentaciones, S.L.U.

MORE THAN 400 But is SYD of uses relative considering susceptions are checking a generalized in source on a second state of the many state of the second state of the second state and que set (second state of the many state of the second sta utiliza de manera creciente debido a las numerosa "enta" cous epi tenta frenie a otros sistemas de control, especial-mente en aquellas zonas donde las columnas del o noro prue esi pueden ser excavadas debido a su gran profundidad o a la existencia de estacios limitad

tratamiento en general, tienen las propiedades. con las que se han diseñado. Además de con- mas de control, especialmente en aquellas zonas trolar los parámetros de ejecución y resistencia donde las columnas de los campos de prueba no del terreno mejorado, resulta esencial determi- pueden ser excavadas debido a su elevada pronar el diámetro o la configuración geométrica fundidad, presencia de nivel freático o limitación del mismo.

de espacios.

g.vukotic@keller-cimentaciones.com. Calle Argentina 15, Alcalá de Henares, 28806, Madrid.

CONTROL DE DIA METRO DE COLUMINAS. CE JET GROUTING - INSPECTOR ACÚSTICO DE COLUMINAS ACIV... 1

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Verticality control IncliJet®
 - Fundamental for permeability reduction by jet grouting and for trial tests (diameter)
 - Keller controlled:
 - All trial columns
 - > 50% of executed columns in general (> 7.000 measurements)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

FIELD TRIAL TESTS

- Verticality control - IncliJet®

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

FIELD TRIAL TESTS

- Verticality control IncliJet®
- Medium deviation: 0,5%

			ł	et grouting – C
Columna	Punto	Profundidad (m)	Desviación (cm)	Desviación (%)
	401	20	14,74	0,74%
	ACT	10	6,61	0,66%
F4	402	20	5,33	0,27%
	AGZ	10	2,74	0,27%
		20	9,49	0,47%
-	AC1	10	2,54	0,25%
P3		20	9,73	0.49%
	AC2	10	2,19	0.22%
		20	6,26	0.31%
	AC1	10	1,53	0.15%
P2		20	2.03	0.10%
	AC2	10	0.66	0.07%
		20	8.30	0.42%
	AC1	10	1.72	0,17%
P1		20	2.24	0,17%
	AC2	20	4.00	0,12%
		10	1,28	0,13%
P4	EJE	20	0.05	0,01%
		20	0,00	0,08%
P3	eje	10	1.75	0,43%
		20	19.04	0,00%
P2	eje	10	5.88	0.57%
		20	18.12	0.01%
P1	eje	10	2.97	0.20%
		20	13.05	0,20%
	eje	10	3 30	0.33%
		20	12.52	0,00%
P5	AC1	10	5.08	0,03%
	<u> </u>	20	14.12	0,01%
	AC2	10	5.50	0,71%
		20	10.80	0,00%
P4'	eje	10	4.00	0,80%
		20	4,80	0,48%
P3'	eje	10	10,03	0,00%
		10	44.70	0,49%
P2'	eje	20	11,70	0,59%
		10	4,49	0,40%
P1'	eje	20	11,54	0,58%
		10	0,80	0,08%
P5'	eje	20	12,56	0,03%
		10	9,83	U,48%

Proyedo: Jet grouting en los Acceso al Aeropuerto de Barcelona

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

FIELD TRIAL TESTS

- Final ACI tube/sensors position

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Verticality control IncliJet®
- Medium deviation: 0,5%
- Grid: 1,35 x 1,35 m triangular

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Verticality control IncliJet®
- Medium deviation: 0,5%
- Grid: 1,35 x 1,35 m triangular

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

- Technical specifications:
 - UCS: 3,50 Mpa
 - C ≥ 0,50 Mpa
 - E = 1.800 4.000 Mpa
 - Density ≥ 19 kN/m³

-Wet samples (fresh jet grouting)

- Core drilling (aprox. 28 days)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

Figura 6. Herramientas para toma de muestras en fresco.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

POLINEDRAD	1033070	- 10	Nº 10	66799 LC.06	ALS HEADER	1.00	HLRI	
u dett		KELLERT	ERRA, S.L.		PERCENTER	R INVERTICEN	A GUESPER	
ANIC LUCE HILLS			L	AV LA SAGRE	ч	And in case of the		
precide cirel	1	K47-K-12	W.	TIT ROBADON		-		
TIPO OF MURITUM				JET GROUTING				
ANALOU TE		-	HEATENCH EDITOR		- kpicn ² x - kbja			
MON MINISTORY	0405485	HORE DE ANNON	- 00	TOP AND	m - 10	THP HONE		
NOT AGAINT TORACH FOR	EL PETICI	ONARD EY:	AMASADO	A IN LA OUTA	MDH.	040949	- 100	
INSERTA RECEPCIONEA EN		CERA	NOW	660909	A.8.00 TO	NUMBER ANNUL	10403509	
			-	Constant and	· · · · · ·		The state of the s	

DETERMINACIÓN DE LAS RESISTENCIAS MECANICAS SOBRE PROBLITAS PRISMATICAS DE 4 x 4 x 16 cm

	SATOS DEL RE	CINAN	R E S U L T A D O S UNE-EN 445:88 y UNE-EN 198-1:88 RESISTENCIA (MP)						
	PROBETA ENGANIDA	EDAD OF LA PROBETA EN							
NUTER.			FLEXOTS	ACCIÓN	COMPRESION				
	mos;	ifet	INNERS D	ARLTON	η	HORA DE RO	rueA.		
			Votor individual	Vator media	moresia	di Alkalier	Van telk		
1	SATURACA	10	1,20	1,28	5,55	8,05	6.0		
2	•	- 54	1/3	1,75	6.20	6,15	6.2		
3		28	1.85	1,90	6.30	5,25	6,2		
4	•	42	0,00	0,00	0,00	8,00	0.0		
5	•	60	0,06	0,00	0,00	0,00	0,0		
8		100	0.00	0.00	0.00	0.00	0.0		

			PAYMACota	is - (Comellà)	
Reg	istr	o de ensayos			Fecha: 16/10/2009
RESU	ILT	ADOS CORRESPOND	IENTES A LA MUESTRA:	186797/1 / MUESTR	EADA EL DÍA: 15/10/2009
Man 74	üM.	Ensayo	Descripción del material	Localización	Observaciones
3030	5	Mecasol - Compresion simple de probetas de suelo, UNE 103-400/1993	COLUMNAS DE SUPERJET GROUTING	SONDEO 1 - PROF 13.85-14.10 M	La probeta de ensayo fiane una relación a/ti<2
RU SE Ca	neda nodi sisi sisi	d zona de retura. d de la proteta. ENCIA a COMPRESION COARE ANDIA.	0.0 % 0.0 % 1799.20 Mp 12.46 Mp(cm)		
RESU	neda noda sist sist form sist nois nois nois	di nons die return di de la großeten macca & compassione conere ancia ancia anti die strongen des strongen des strongen de	6.0 t 100.15 % 12.44 fp/cm ⁴ 1.01 gr/cm ⁴ 1.0	186797/2 / MUESTR	EADA EL DÍA: 15/10/2009
RESU	neda nodi sist rya. sist form NSTC nuic ratio	d toos de retura de la protecta retura a consiston conse action acti	6.0 % 6.0 % 199. 35 % 12.44 %2/cm ⁴ 15.09 m 1.01 gc/cm ⁴ 1.01 gc/cm ⁴ 1.01 gc/cm ⁴ IENTES A LA MUESTRA: Descripción del material	186797/2 / MUESTR	EADA EL DÍA: 15/10/2009 Observació nas
RESU Resta	nedi nodi sist rga sist form noit rait RUTi	di soos de reture di de la protecta mercia a Contratisción coase articia actón as Ennida de Ennida as Ennida ADOS CORRESPOND Entayo Mercasol - Companión de annie UME IC3-400/1850	C 3 1 C 3 1 102.25 % 123.44 folder 1.54 folder 1.55 gr/cm ² I.51 gr/cm ² IENTES A LA MUESTRA: Descripción del material COLUMNAS DE SUPERJET GROUTING	186797/2 / MUESTR Leositabién SonDEO 1 - PROF 16.40-16.70 M	EADA EL DÍA: 15/10/2009 Observaciones La protecto de ensero Bone una relación alti-2

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

	Profundidad (m)	Muestras	Resistencia Tracción (MPa)	Días desde la toma de muestra	RCS 3 días (MPa)	RCS 7 días (MPa)	Densidad Lechada (t/m ³)
P1	15,00	M18-1	1,53	7,00		4,66	
	15,00	M18-3	1,48	3,00	4,45	<u>S</u>	3S
	15,00	M19-1	1,53	3,00	4,20	- () 	1,55-1,57
	15,00	M19-3	1,39	7,00		3,88	
	18,00	M26-1	1,53	3,00	5,69		
	18,00	M26-3	1,39	7,00		4,01	
	18,00	M27-1	1,60	3,00	5,80		
P2	18,00	M27-3	1,67	7,00		5,81	1 55 1 57
	15,00	M28-1	1,64	4,00	4,64		1,55-1,57
	15,00	M28-2	1,69	7,00		5,06	
	15,00	M29-1	1,69	7,00		5,18	
	15,00	M1-1	0,9	7,00		4,6	
	15,00	M1-3	0,9	7,00		4,5	- - 1,52-1,55
	15,00	M3-1	0,7	4,00	3,90		
P3	15,00	M3-2	0,8	7,00		4,1	
	18,00	M5-1	0,9	7,00		4,3	
	18,00	M5-2	0,9	4,00	3,10		
	18,00	M5-3	0,7	7,00		3,2	1
	ST.		· · · · · · · · · · · · · · · · · · ·				P
2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

-Wet samples (fresh jet grouting)

	Profundidad (m)	Muestras	Resistencia Tracción (MPa)	Días desde la toma de muestra	RCS 3 días (MPa)	RCS 7 días (MPa)	Densidad Lechada (t/m³)
P1	15,00	M18-1	1,53	7,00		4,66	1
	15,00	M18-3	1,48	3,00	4,45		
	15,00	M19-1	1,53	3,00	4,20		1,55-1,57
	15,00	M19-3	1,39	7,00		3,88	
	18,00	M26-1	1,53	3,00	5,69		
	18,00	M26-3	1,39	7,00		4,01	
	18,00	M27-1	1,60	3,00	5,80		
P2	18,00	M27-3	1,67	7,00		5,81	1 55 1 57
	15,00	M28-1	1,64	4,00	4,64		1,55-1,57
	15,00	M28-2	1,69	7,00		5,06	
-	15,00	M29-1	1,69	7,00		5,18	
	15,00	M1-1	0,9	7,00		4,6	
	15,00	M1-3	0,9	7,00		4,5	
	15,00	M3-1	0,7	4,00	3,90		
P3	15,00	M3-2	0,8	7,00		4,1	1 52-1 55
	18,00	M5-1	0,9	7,00		4,3	1,52-1,55
	18,00	M5-2	0,9	4,00	3,10		
	18,00	M5-3	0,7	7,00		3,2	
	8						

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

- Technical specifications:
 - UCS: 3,50 Mpa
 - C ≥ 0,50 Mpa
 - E = 1.800 4.000 Mpa
 - Density ≥ 19 kN/m³

-Wet samples (fresh jet grouting)

- Core drilling (aprox. 28 days)

CONFIRMED

COLUMNAS ENSAYADAS	SONDEO	PROFUNDIDAD	DENSIDAD t/m²	CARGA KP	RESISTENCIA CORREGIDA MPa
C2-C4	5-1	11	1,63	6054,08	5,19
C2-C4	5-1	13	1,83	14506,12	12,56
C2-C4	S-1	17	1,71	3651,02	3,16
C3-C5-C6	S-3	17	1,71	4178,57	3,65
C3-C5-C6	S-3	11	1,71	5124,49	4,44
C3-C5-C6	S-3	13	1,75	4936,73	4,27
C2-C3	S-2	13	1,80	4367,35	3,78
C2-C3	S-2	17	1,95	12320,41	10,56
C2-C3	5-2	11	1,83	3672,45	3,21

Tabla 5 Resumen de los resultados obtenidos en las muestras extraidas en los sondeos.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

- Lugeon permeability tests:

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

IMPROVED SOIL CHARACTERISTICS

- Lugeon permeability tests:
 - Max. pressure: 4 bars
 - Factor safety > 1,3

PUNTO DE ENSAYO

C2-C4

C2-C3

C3-C5-C6

- 10 min pressure phases
- Med. perm.:9,5.10⁻⁸ m/seg

SONDEO

S-1

S-2

S-3

Tabla 7 Resumen de las permeabilidades medida

1,34 x 10-7

9.62 x 10⁻⁸

5,71 x 10⁻⁸

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Different types of monitors and nozzles (DX, D, DS)
- Nozzle: 2 x 4.6 mm / 6,5 mm
- Pressure: 400-600 bares
- Grout density: 1.5-1.55 t/m³
- Flow rate: 420-650 l/min

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Different types of monitors and nozzles (DX, D, DS)
- Nozzle: 2 x 4.6 mm / 6,5 mm
- Pressure: 400-500 bares
- Grout density: 1.5-1.55 t/m³
- Flow rate: 420-650 l/min

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Different types of monitors and nozzle (DX, D, DS)
- Nozzle: 2 x 4.6 mm / 6,5 mm
- Pressure: 400-500 bares
- Grout density: 1.5-1.55 t/m³
- Flow rate: 420-650 l/min

nözzl	es Monitor	Nozzle 🗸	DN [mm]	average equivalent force [kN]	area [cm²]	stress F/A [kN/cm²]
1	Japan asymmetrisch	Japan	4,60	0.883	10,20	0,087
2	Japan asymmetrisch	Japan abgesetzt	4,60	0,838	11,20	0,075
3	Japan asymmetrisch	Japan	6,00	1,525	19,03	0.080
4	Keller Standard 114mm	Japan	4,60	0,890	18,70	0,048
5	Keller Standard 114mm	Japan abgesetzt	4,60	0.842	24,98	0,034
б	Keller Standard 114mm	Japan	6,00	1,523	29,49	0,052
8	Keller Standard 114mm	Keller DS	6,00	1,417	34,58	0,041
13	Keller DX	Keller DS	6,00	1,857	41,37	0,045

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- Different types of monitors and nozzles (DX, D, DS)
- Nozzle: 2 x 4.6 mm / 6,5 mm
- Pressure: 400-500 bares
- Grout density: 1.5-1.55 t/m³
- Flow rate: 420-650 l/min

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER SITE DATA MANAGER

Flowchart •

KellerSiteDataManager

further development

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER SITE DATA MANAGER

Documentation for each column •

		1				
			1			
			P			
and a second	- 2	2			E	
in has	00 D		100	- 60		2 10
anter Situla Seri (stan)						
6.80 8.00	a.					
0.00 0.00	k.					
091.00 3016.00	i.					
	544,00 0.00 091,00 3014,00	546.00 0.00 091.00 0016.00			ager	

8 Pullit Ave

12. Tele Null-

1 Stale Acto Sikde Gro

Kelle

Koralmbahn - I Protokol Hershelistere Steets Transsitere	Iblatt 15.12.2 320300 Nov. an	35L DS 015	Kanzian -Säule N el Srejach Dec Ver-ecchioco	ir: 961 Internation	ICH IN MAN	
Algemeine Dat Bohrspälung Bohrspälung Bohrlochstättav Bohrdurchmess	en: Se We B en: S	säbat lever shripi 15-150	rung in Dreft ab Entliefe So Mung Inve	driverfahren Ingension	DSV-Verlahre Düserträger Düse 1: Däse 2:	n - 2.9haan DX-Montor 6.0nm 4.2mm
Eigenschaften S Bindemittel W/9 Wert: Dictrie Skapens	N N N N N N N	n Tapis S D NJ Ng	oljet 1 (der ¹		Abətmat: Dictis Rickla Mərəhəlit	25 cm metris at lagidad Mithin Mitalanamian 38 sec metris
Lage und Höher Koordinaten Ar	i.	t soli	í			International All mid-
Odwert 97062.72	Northe 165794	ert L29	Silulen OK 433.43 mijA	Silulen UK 420.83 müA	Skulentänge och 2,5m	Botrplanum: 439,92 miA Neigung: 2,00 *
Harstellungspa	ranseter	2				
Rahmerhalashilashi Guralasa Ukuba		Undehan	an 0	Ulean		
Pumpendhuck:			0 lbar	Entrings	te:	2 Ulmin
			00	én.		1
Delgestwird	gielt	50	cay'nia	Umdrehung	197. I.	r Wimin
		-	44.5	#1. x 1		and the second se

					-	
- 24	500	61				
			-	_		

Event	Start	Ende	Dauer	Pumpmenge
Puritidauer	07:23:23	07.46.51	23,47 min	47161
Bohren, Mesam, Manipulation			17.9 min	17001
Vorschreiden				
Düsen	073756	07;43:30	5,57 min	30(6)

Bohrlings ab Bohrplanum: 19,09 et

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER SITE DATA MANAGER

Paramete	esaiz.
😑 Nr.	1
 NI. 	2
Nr.	3
Nr.	4
Nr.	5
Nr.	6
Nr.	7
NI.	8
N:	9
N.	10
😑 Nr.	11

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER SITE DATA MANAGER

• View: column length

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER SITE DATA MANAGER

View: deviation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

KELLER SITE DATA MANAGER

- KCI: real 3D
 - select KCI exportfile from KSDM

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- 4 rigs
- double shift, 6 days per week
- 8 teams
- Total drilling length: 293.400 m
- Total jetting length: 85.000 m

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

- Special jet grouting rigs for inclined columns:

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- New generation jet grouting pumps and plants:
 - Pressure up to 900 bars
 - Flow rate > 800 lit/min

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- New generation jet grouting pumps and plants:
 - Pressure up to 900 bars
 - Flow rate > 800 lit/min

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

- New generation jet grouting pumps and plants:
 - Pressure up to 900 bars
 - Flow rate > 800 lit/min

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

- Already finished:

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

EQUIPMENT AND EXECUTION

- Already finished:

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• SUMMARY:

- JET GROUTING

- Its versatility and flexibility together with its field of applications, in almost every soil formation, makes it a perfect solution for complex geotechnical problems.
- It is effective in open field as well as in confined space with limited headroom, since the column diameter does not correspond to the size of the rig.
- In the last decade, the unique features of this technology were used in almost all high profile transportation and infrastructure projects in Europe in order to facilitate the construction process and to improve the level of safety and efficiency.
- Application of the recent technology was presented.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• SUMMARY:

- JET GROUTING

- Importance of QAQC and trial field tests:
 - Diameter control: ACI
 - Importance of verticality; design consideration and control; IncliJet
 - Geomechanical characteristics control
- New generation equipment
 - New rigs (mast > 40 m)
 - High capacity pumps and plants (> 500 bars and flow rate > 600 l/min)
 - New nozzle, rods and monitor design better efficiency

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil improvement by jet grouting for the construction of the Access to the Barcelona Airport Application of the recent technologies

Goran Vukotić Keller

MUITO OBRIGADO PELA VOSSA ATENÇÃO!

Organização

de Geotecnia

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Câmara Municipal de Vila Franca de Xira www.cm-vfxira.pt Apoios

2SGT2019 2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Successful Menard Vacuum trial area in the New Mexico City Airport

Jérôme Racinais

TC211 Vice-Chairman Engineering Director

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

450

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The New Mexico City International Airport (NAICM)

the the and 1st phase in operation: October 2020 Total area: 4 430 hectares X-shaped terminal: 743,000 m² Runways: 3 Passengers per year: 68 millions

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil conditions

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil conditions

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil conditions

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil conditions

Runway III

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Trial areas

Ground improvement works

L LENN

Runway II

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Prefabricated Vertical Drains and Preloading under Runway II

33 Millions Im in 6 months Up to 15 rigs

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Prefabricated Vertical Drains and Preloading under Runway II

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

 $\sigma \uparrow = \sigma - u$

Menard Vacuum Trial Area

Classical preloading

Vacuum preloading

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Execution

Working platform $0,5 m + 0,5 m = 1 m of "tezontle" (13,7 kN/m^3)$ Monitoring installation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

h

Menard Vacuum Trial Area - Execution

Vertical and horizontal drains

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Execution

Before Vacuum

After beginning of Vacuum

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Execution

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Execution

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Note: The atmospheric pressure at the Texcoco Lake (2228 m a.s.l.) is 78 kPa

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Results

Pore Water Pressures

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Results

Settlements

PA202

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Results

Settlements

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Results

Settlements and extracted water

Volume of extracted water V_{water} = 9 353 m³

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Results Settlements

Volume of extracted water V_{water} = 9 353 m³

The amount of extracted water is equal to the total settlement. Menard Vacuum Consolidation method has nothing to do with dewatering.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area - Results

Lateral displacements

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area vs Drain to Drain Trial Area

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area vs Drain to Drain Trial Area

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area vs Drain to Drain Trial Area

1,20 m at the edges

Differential settlements along the transverse centerline

Fig.10 summarizes data obtained from the horizontal inclinometer. Curves evidence isochronic settlement profiles that have almost symmetrical shapes and trends similar to that exhibited by traditional embankments. The differential settlements between the center and the boundaries of the embankment are influenced by the inward movements of the lateral boundaries caused by vacuum. Boundary settlements vary linearly with the corresponding ones detected at the centre. Along the transverse centerline a ratio equal to 0.6 between lateral and central settlements was observed: this value is practically coincident with that predicted by the elastic theory for traditional embankments.

Fig 10 – Time history of settlements measured by horizontal inclinometer 475

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area vs Drain to Drain Trial Area

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area vs Drain to Drain Trial Area

Drain to Drain method **1,98 m** in 6 months

Menard Vacuum 2,90 m in 6 months

14

2SGT2019 2SGT2019 2nd Seminar on Transpo Soil Improvement Challer 28-29 January 2019 | Vila

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Menard Vacuum Trial Area vs Drain to Drain Trial Area

Menard Vacuum Consolidation method

Drain to Drain method

2nd **Seminar on Transportation Geotechnics** Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Obrigado! Thank you! Merci!

jerome.racinais@menard-mail.com

nenard

2SGT2019 2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Challenges in ground improvement research

Wolfgang Jimmy Wehr

Professor Geotechnical Engineering, Erfurt university of applied sciences, Germany

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

Contents

- Optimization of vibro compaction
- Grain crushing due to depth vibrators
- Filter stability of vibro stone columns
- Further challenges

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro compaction: model test cylinders

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro compaction: model test device

wooden plate with holes for dynamic probing tests

drainage

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro compaction: working platform

design (master thesis)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro compaction: test of depth vibrator

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro: resonance frequencies of different depth vibrators

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro: Limitation of resonance frequencies

Vibro: resonance

- Does resonance of pure soil exist?
- Can vibrator amplitudes in the soil be larger than amplitudes in the air?
- Is amplitude control possible by the crane operator?
2SGT20192nd Seminar on Transportation Geotechnics
Soil Improvement Challenges in Alluvial Zones
28-29 January 2019 | Vila Franca de Xira | Portugal

Grain crushing due to depth vibrators

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Grain crushing due to depth vibrators

Proctor	Proctor test	modified Proctor test	modified Proctor M-vibrator	modified Proctor S-vibrator
Mass falling weight	2.5 kg	4.5 kg	4.5 kg	4.5 kg
Diameter falling weight	50 mm	50 mm	50 mm	50 mm
Falling height	305 mm	457 mm	457 mm	457 mm
Number of layers	3	5	5	5
Number of blows / layer	56	56	71	178
Volume of test cylinder	2208.93 cm ³	2208.93 cm ³	2208.93 cm ³	2208.93 cm ³
Compactions energy	0.569 MNm/m ³	2.557 MNm/m ³	3.242 MNm/m ³	8.106 MNm/m ³

2SGT20192nd Seminar on Transportation Geotechnics
Soil Improvement Challenges in Alluvial Zones
28-29 January 2019 | Vila Franca de Xira | Portugal

Grain crushing due to depth vibrators

- Grain crushing of depth vibrators is modelled by modified Proctor test in the laboratory
- New modified parameters are determined with standard tests (oedometer – Es- constrained modulus, simple shear – friction angle phi)
- Es is usually larger than 200MN/m² because of reloading
- Phi is usually larger than 45° because of large grains

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro stone columns: filter stability

acrylic glass with many small soil particles in the water = critical hydraulic gradient

- 1 acrylic glass
- 2 sand
- 3 clay
- 4 sand base
- 5 latex coating
- 6 water level outlet
- 7 water level inlet

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vibro stone columns: filter stability

Construc- tion project	Soil	Depth of sensor [m]	Distance b. sensor & RSS [m]	Excess Porewater pressure [kPa]	Hydraulical gradient [-]
Melle	TL, w-st	7.5	1.40	33.8	2.4
Bremen	TL, br-w	3.2	0.78	51.6	6.6
Klagenfurt	SU*	5.0	0.76	108.0	14.2

Vibro stone columns: filter stability

2**SGT**2019

- Filter stability criteria (Terzaghi) not valid for gravelclay interface
- Hydraulical gradients generated by excess pore water pressure are considerably lower than laboratory (Munich and Erfurt university) values
- During column installation the excess pore water pressure is not high enough to start the erosion process around vibro stone columns in cohesive soil

Further challenges

- Multi-criteria optimization of stone / concrete columns (costs vs. settlement) – IT-interface
- What is Multi-criteria optimization?
 - An optimization with different variables, i.e.
 - Column length
 - Column diameter
 - Column grid
 - Thickness of load distribution layer
 -
 - Multiple calculations
 - An optimization algorithm finds the optimal solution
 - Short calculation time
 - Theory: results of Edgeworth-pareto-front

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Further challenges

• Multi-criteria optimization: backpack (Dantzig 1940)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Further challenges

• Multi-criteria optimization: soil profile / parameters with vibro stone columns

∇	1.1									
E.	22	22		e e						
¥.	12	2	12	2						
22	14	192	14	2						
8-			12	1						
2	82		- K	1 8						
8	10	12	一级	1						
C/6	No	11	12	2						
14	12	14	12	2	2					
X) X	The second secon			NAX.	R					
R R R				AAXXAA						
おおお		A H H		XXXXX						
k K K		N.N.F.		200				55		
K K K	Boden	S S S	2 D 3	DV	Es	7. Share	Φ.	C	v 1.1	Bezeichnung
R R	Boden	OK × 0,00	D×00	DV 1000	Es Mice"1 50,00	7 phint 19,00	φ -P1 35,00	C (Anter: 9,00	v 1-1 0,33	Bezeichnung Sand
1) 1) 1)	Boden	0K 800 1.00	D 0,00 0,50	DV N 0,00 0,50	Es Milet 50,00 3,00	7 19,00 10,00	φ P: 35,00 25,00	c Jacent 9,00 5,00	v 1-1 0,33 0,40	Bezelchnung Sand Schluff
1) 1) 1)	Boden	OK N 0,00 1,00 8,00	D ≥ 0,00 0,50 0,00	DV M 0,00 0,50 0,00	Es Minet 50,00 3,00 85,00	7 BNMS 19,00 10,00 11,00	φ P: 35,00 25,00 35,00	c 9,00 5,00 0,00	V 1-1 0.33 0.40 0.33	Bezelchnung Sand Schluff Sand

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Further challenges

• Multi-criteria optimization: results

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Further challenges

• Leckage of excavation pits

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Further challenges

• Leckage of excavation pits

Water dosage

admissible amount of water 1.5 l/s and 1000m²

Photo documentation

Further challenges

- Leckage of excavation pits
 - Determination of wet area in the laboratory depending on temperature, moisture content in the air, wind speed, wall roughness ...
 - Comparison of wet area in laboratory and on site
 - Analytical formula to calculate wet area will be developed

Further challenges

- Suitability of ground improvement methods during earthquake with/without soil liquefaction
- Optimierung of penetration of top vibrator systems with tube / sheet pile /... – mechanical engineering interface

Summary

Optimization of vibro compaction with frequency control

Change of column design parameters depending on compaction energy due to grain crushing

Evaluation of critical hydraulic gradient to ensure filter stability of vibro stone columns. Modification of testing device.

Realistic design of jet grout column diameter due to consideration of new parameters

2SGT2019 Jet grouting: combination of analytic approaches

- of
- 1. Bernd Bergschneider (Wuppertal): maximum diameter
- 2. Jürgen Stein (Hamburg): development of diameter vs time

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Jet grouting: design of column diameter

New items

- pore water pressure depending on soil permeabilty (consolidation calculation to built of excess pore water pressure) and
- cohesion of soil along the shear zones

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Jet grouting: design of column diameter

- Analytical formula to calculate column diameter will be developed depending on
 - jet grouting machine parameters
 - jet grouting execution parameters
 - soil and water parameters

2sgt2019 2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Application of Geotextile Encased Columns (GECs) in embankment over soft soils

Patricia Amo Sanz

Huesker Geosintéticos S.A.

Ideas. Ingenieros. Innovación.

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

507

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• Methods of constructing embankment foundations to avoid the collapse of the structure built on soft soils

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

 Advantages of Ringtrac[®] as methods of constructing embankment foundations to avoid the collapse of the structure built on soft soils

- Can be used in very soft soils (cu < 15 kN/m2). Also permissible under EBGEO for use in soils with Cu < 3 kN/m2
- Settlement reduction.
- Acceleration of settlements (vertical drainage effect → Megadrain).
 Around 90 % of consolidation is during construction period.
- Increase of shear strength.
- Flexible bearing behaviour.
- Geotextile is a filter and separation element.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• How the system works?

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

 Regulations for the GEC system in general and for German harbour and coastal construction in particular

> Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcements – EBGEO

DGGT C Deutsche Geseflichaft für Geotechnik e. V. German Geotechnical Society Recommendations of the Committee for Waterfront Structures Harbours and Waterways EAU 2004

Digitized and updated version 2009

mst & Sohn

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

 Regulations for the GEC system in German road and rail projects

Die Bahn DB	Forschungsgesellschaft für Straßen- und Verkehrswesen Arbeitsgruppe Erd- und Grundbau
Richtlinie 836	Merkblatt
Erdbauwerke	über Straßenbau
und	auf wenig tragfanigem Untergrund
sonstige geotechnische Bauwerke	
planen, bauen und instand halten	R2
Entwurf	
Stand 28.02.2005	
Das Urheberrecht an dieser Richtlinie (Papier- oder Softwareversion) hat die DB Netz AG. Jegliche Formen der Vervielfältigung oder der Weitergabe an Diritte bedürfen der Zustimmung der DB Netz AG.	
Lehting 238	Ausgabe 2010

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• How is the design?

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

• Design with Raithel:

Following assumptions are made:

The settlements on the top of the column and the soft soil are equal.

- The settlements and strain in the geotextile result from the vertical pressure σ_0 in the column head area due to the loading.
- The settlement of the bearing layer below the columns can be neglected.
- In column: the coefficient of active earth pressure is valid.

In soft soil after installation:

Using excavation method: the earth pressure at rest is valid. Using displacement method: an enlarged coefficient of earth pressure $K_{0,B}^* \ge 1.0$ is given. h

Geotextile Ringtrac has a linear-elastic material behaviour.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Global stability with GGU analysis and PLAXIS

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Installation methods

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Characteristics of column manufacturing methods

	Excavation	Displacement m	Displacement methods		
	method	with casing	with deep vibrator		
Possible manufactured diameter	More than 1.5 m	Generally up to 0.8 m	Generally up to 0.6 m		
Removal and disposal of soil material	Necessary	Unnecessary	Unnecessary		
Time required for column manufacture	More	Less	Less		
Manufacture with very high penetration resistances ¹⁾	Possible	Generally not possible	Generally not possible		
Vibrations and excess pore- water pressures as a result of column manufacture	Low	High ²⁾	High ²⁾		
Column constriction during manufacture	No	Generally yes ²⁾	Generally no ²⁾		
Horizontal and vertical displacement as a result of column manufacture	No	Yes ²⁾	Yes ²⁾		
Prestressing of soft stratum during installation	No	Yes ²⁾	Yes ²⁾		
Effects on geosynthetic casing during installation	Low	Low	Generally high		
Examination of strata and column end depth	Possible visually	Via machine parameters	Via machine parameters		

Table 10.1 Characteristics of column manufacturing methods

For example, dense intermediate sand layers Depending on ground stiffness and grid spacing 2)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Conclusions

2**SGT**2019

- Suitable for extremely soft soils.
- Almost all settlement takes place within construction period and reduce 50-75 % in creep settlement.
- Up to 50 % fewer columns than with vibro stone column solution.
- Adaptability to local conditions and loads.
- Use of locally sourced soils as columna fill.
- High level of certainty in costing and construction.
- Neighbouring structures shielded from horizontal presure + Adjacent buildings unaffected by settlement.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Aplicação de tecnologia Geotube[®] no encapsulamento de solos contaminados em aterro: caso de obra marítimo-portuário de referência

Emanuel Ferreira

Geosin / TenCate

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

520

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Project

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Project

- 850.000 m2 total area
 - 2.0 million TEU/yr
- 2 billion liter/yr bulk liquid
 - 1.1 km pier length
- Largest Terminal In South America

Rated Most Innovative Port Project on KPMG's 2012
 Infrastructure 100 Global Projects List

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Challenge

- 50% of Project Area Located In Wetlands and Tidal Zone
- 600,000 m3 of Contaminated Sediments to be removed
- Required Large Volume of Imported Selected Fill
- Traditional Engineering Solutions threaten Economic Viability of Project

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Solution

• Use Geotube Dewatering Technology to contain and dewater 600,000 m3 of contaminated sediments

• Create Geotube Dewatering Cells within the designed fill area

• Dredged Contaminated Sediments to be Contained, Dewatered and Consolidated within the Geotube Units, replacing approximately 450,000 m3 of imported select fill

• Create a Beneficial Use for the Contaminated Sediments and greatly reduce project construction cost

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

TenCate Geotube – Dewatering Technology

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

TenCate Geotube – Dewatering Phases

The Design

- Enclose the tidal flat area of the project with 3.5m high clay berms
- Construct Geotubes Dewatered Cells equal to 235,000 m2 within the tidal flat area of the project site
- Install 13,500 lm of 36.5m Cir. Geotube units with a storing capacity of 35.2m3/m in the Dewatering Cells
- Dredged Contaminated Sediments into Geotubes Units, to be Dewatered and Consolidated to at least 450,000 m3 to replace imported select fill

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Geot	ube	Metric	Jnits Input - Known Volume Version 11.2A Tom Stephens		
		Project Name:	Embraport Terminal	ľ.	
		Location:	Santos, SP, Brazil		
		Contact:	Luiz Escobar, Leo Melo Casar		
		Date:	5/6/2007		
		Type of Material:	Marine Sedimants		
Input		Units	Output		Units
Volume	680.000	Cubic Meters	Total Volume Pumped	3 397 016 508	Liters
Specific Gravity	2.65		Wet Volume per day	8 639 994	Liters
% Solids in Place	40.0%	-	Wet Volume per day	8,638,9	CM
	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	V		000 000 0	Town (months)
% Solids During Pumping	10.0%		Total Bone Dry Tons	289,639.0	I ons (methc)
% Solids During Pumping Target dewatered % Solids	10.0%		Total Bone Dry Tons Estimated Pumping Days	393.2	Days
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand*	10.0% 63% 20.0%	-	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume	289,639.0 393.2 415,528.3	Days CM
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* *% Coarse grain & sand is removed ft due to dewatering and added back in a Production:	10.0% 63% 20.0% form the calculation at the end in regul	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height	289,639.0 393.2 415,528.3 731,744.6 Meters	Tons (metric) Days CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed it due to dewatering and added back in a Production: Pumping Rate (LPM)	10.0% 63% 20.0% from the calculation at the end in regul	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m	289,639.0 393.2 415,528.3 731,744.6 Meters 93,433	Days CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed it due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day	10,0% 63% 20.0% form the calculation at the end in regul	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m	289,639.0 393.2 415,528.3 731,744.6 <u>Meters</u> 93,433 51,995	CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed fi due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day % Efficiency	10,0% 63% 20.0% form the calculation at the end in regul 10,000 24.0 60%	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m 18.29m X 1.83m	289,639.0 393.2 415,528.3 731,744.6 Meters 93,433 51,995 34,276	CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed fi due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day % Efficiency	10,0% 63% 20.0% from the calculation at the end in regul 10,000 24.0 60%	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m 18.29m X 1.83m 22.87m X 1.98m	289,639.0 393.2 415,528.3 731,744.6 Meters 93,433 51,995 34,276 24,640	CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* *% Coarse grain & sand is removed it due to dewatering and added back in : Production: Pumping Rate (LPM) Hours per Day % Efficiency Material type:	10.0% 63% 20.0% from the calculation at the end in regult 10,000 24.0 60%	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m 18.29m X 1.83m 22.87m X 1.98m	289,639.0 393.2 415,528.3 731,744.6 Meters 93,433 51,995 34,276 24,640 22,836	CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* *% Coarse grain & sand is removed it due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day % Efficiency Material type: Sand and/or Minerals	10,0% 63% 20,0% from the calculator at the end in regul 10,000 24.0 60%	n for volume reduction red Geotubetti volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m 18.29m X 1.83m 22.87m X 1.98m 24.33m X 1.98m	289,639.0 393.2 415,528.3 731,744.6 93,433 51,995 34,276 24,640 22,836 19,920	CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed it due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day % Efficiency Material type: Sand and/or Minerals	10,0% 63% 20.0% from the calculation at the end in regul 10,000 24.0 60%	n for volume reduction red Geotubetti volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube® Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m 18.29m X 1.67m 22.87m X 1.98m 24.39m X 1.98m 27.44m X 1.98m 36.56m X 2.13m	289,639.0 393.2 415,528.3 731,744.6 93,433 51,995 34,276 24,640 22,836 19,920 13,425	CM Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed th due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day % Efficiency Material type: Sand and/or Minerals Percent of Maximum Filled C 90%	10,0% 63% 20.0% from the calculation at the end in regul 10,000 24.0 60%	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube@ Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.67m 18.29m X 1.83m 22.87m X 1.98m 27.44m X 1.98m 36.56m X 2.13m 22.87m X 1.98m	289,639.0 393.2 415,528.3 731,744.6 93,433 51,995 34,276 24,640 22,836 19,920 13,425 24,640	CM Tons (metric) Tons (metric)
% Solids During Pumping Target dewatered % Solids % Coarse grain & sand* "% Coarse grain & sand is removed to due to dewatering and added back in a Production: Pumping Rate (LPM) Hours per Day % Efficiency Material type: Sand and/or Minerals Percent of Maximum Filled C 90% For MDS Applications:	10,0% 63% 20.0% from the calculation at the end in regul 10,000 24.0 60%	n for volume reduction red Geotube® volume.	Total Bone Dry Tons Estimated Pumping Days Estimated Dewatered Volume Estimated Dewatered Weight Estimated Geotube@ Quantity: Circumference X Pumping Height 9.15m X 1.52m 13.72m X 1.57m 18.29m X 1.67m 22.87m X 1.98m 24.39m X 1.98m 36.56m X 2.13m 22.87m X 1.98m Estimated MDS Geotube@ Units:	289,639.0 393.2 415,528.3 731,744.6 93,433 51,995 34,276 24,640 22,836 19,920 13,425 24,640	CM Tons (metric) Selectable

our control. This document should not be construed as engineering advice, and the final design should be the responsibility of the project engineer and/or the project manager.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Design

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Design

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

The Pavement Design

For verification, the gravel has no cohesion, therefore c = 0, and the footing is at surface level, therefore D = 0 and q = 0 which simplifies the formula to

Solve for the Allowable Bearing Capacity,

where B = 0,7m, γ = 2,1T/m², S γ = 0,8 for a square footing as indicated by Terzaghi and N γ = 763 for ϕ = 50°, giving:

 $q_{\mu} = 0.8 \times 2.1 \times 0.7 \times 763/2 = 448.6(T/m^2)$

which leads to the safety factor:

Bearing Capacity FS = (448.6 / 185.7) = 2.42

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Questions are welcome!

Thank you for your interest!

Presented by: Emanuel Ferreira Co- Authors: Filinto Oliveira Gerben van den Berg

2SGT2019 2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

THE USE OF 16 TON CDC COMPACTION FOR THE GROUND IMPROVEMENT OF THE TRANSPORTATION ROUTE OF A 13.500 TON RAILWAY BRIDGE (NL)

J.W. Dijkstra M.Sc.

Cofra

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

tugal

Apoios

547

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Index

- Project overview
- Specific case
- Chosen method
- Challenges
- Results

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Main Project

- SAA (Schiphol-Amsterdam-Almere)
- SAA-One (number 2 on the map)
- Widening of the A1 highway
- Main highway >200.000 cars/day
- Construction of new railway bridge

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Bridge location

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Bridge and route details

- Free span of 255m (Eiffel tower is 324m), height 50m
- Weight of 13.500 ton (almost two times the steel weight of the Eiffel tower)
- 140 kN uniform loading of SPMT
- Path of the bridge 380m

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Soil conditions

- Up to 4m peat on top of thick sand body
- Very loose sections of sand in top layers underneath the existing highway

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Requirements

- Have a dilatant behavior of the sand and prevent static liquefaction under the sudden loading
- Target ~85% RD over top 6.5m (orange)
- Minimum is 80% RD on limited stretches (red)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Boundary conditions highway

- Only weekend closures possible for improvement of highway
 - Removal of asphalt
 - Perform solution
 - Solution needs to be suitable to be performed 3m from moving traffic
 - Make subbase
 - Install pavement
 - Install markings
 - Time slot of 8 to 12 hours for ground improvement and testing !!

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Ground improvement solution

- Compaction of highway sections with CDC
- Soil replacement with CDC compaction on other sections (sand available from surcharge of PVD improved main stretch of highway)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction method

CDC compaction

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction method

• <u>Small</u> video

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Impression

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Working alongside highway

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Timelaps

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Challenge: Loose sand

- Very loose condition backfilled sand combined with high water table
- Shoebox no drainage to the sides

Resulting in:

- Stability issues
- Compaction less effective

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Solution: Dissipation of porewater

- Adjusted work method
- Installation of PVD

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Challenge: Time

 Immediate CPT testing after compaction

Resulting in:

• Cone resistance line is influenced, limited effect (?).

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Solution: GPS quality control

GPS based positioning and registration of data

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Our GPS quality control

Used on all our techniques

- Consolidation (PVD, vacuum)
- Compaction (Roller, CDC en Vibro)
- Elements (GEC, stone columns, piles)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

GPS quality control CDC

- <u>Settlement</u>
- Blows
- Settlement per blow

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

GPS quality control CDC

- Settlement
- Blows
- Settlement per blow

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

End results CPT

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

End results CPT

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

End results: Dilatancy

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Obrigado!

2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Reinforcement and Ground Improvement GEOPIER[®] Solutions

Javier Moreno TERRATEST, S.A.

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

572

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

GEOPIER® Ground Improvement Options

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Scoped of application – Intermediate Foundations

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Preliminary Values for Geopier® Soil Reinforcement Design

SPT = N Blows Per Foot All Soils	UCS, kN/m ² Fine- Grained Soils	Sands & Sandy Silts			Silts & Clays			Peat		
		Allowable Composite Footing Bearing Pressure, kN/m ² (q _{all})	Geopier® Element & Footing Segment Capacity, kN ⁽¹⁾ (Q _{ceil})	Geopier [®] Element Stiffness Modulus, MN/m ^{3 (2)} (k _g)	Allowable Composite Footing Bearing Pressure, kN/m ² (q _{all})	Geopier [®] Element & Footing Segment Capacity, kN ⁽¹⁾ (Q _{cell})	Geopier [®] Element Stiffness Modulus, MN/m ^{3 (2)} (k _a)	Allowable Composite Footing Bearing Pressure, kN/m ² (q _{all})	Geopier® Element & Footing Segment Capacity, kN ⁽¹⁾ (Q _{cell})	Geopier® Element Stiffness Modulus, MN/m ^{3 (2)} (k _g)
1-3	10 - 48	239	289	44.8	215	222	33.9	168	133	20.4
4-6	48 - 110	287	400	61.1	240	311	47.5	191	200	29.9
7-9	110 - 168	335	467	70.6	287	378	57.0	239	245	33.9
10-12	168 - 220	383	512	77.4	335	445	67.9	N/A	N/A	N/A
13-16	220 - 287	407	556	84.1	335	467	70.6	N/A	N/A	N/A
17-15	287 - 383	431	578	88.2	359	489	74.7	N/A	N/A	N/A
Over 25	Over 383	479	645	97.7	407	534	81.5	N/A	N/A	N/A

Notes: 1. For 0.46 m Geopier® elements, multiply by 0.45

For 0.61 m Geopier® elements, multiply by 0.7

For 0.91 Geopier® elements, multiply by 1.3

2. Geoplei & element modulus to be confirmed by full-scale modulus tracts to determined by Geopler designer.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Common Applications

Replacement of drilled shafts and structural fillers

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Common Applications

Replacement of <u>structurally-supported</u> floor slabs

Elements <u>reinforce soft and compressible soils</u> for support of relatively thin floor slabs.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Common Applications

Provide global stabilization for embankments and retaining walls

Shear reinforcement in Geopier improvement zone

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Common Applications

Provide support for tank and wind power tower foundations

Settlements control and increased rotational stiffness

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

GEOPIER® Solutions

<u>"Drilling and</u> compacting"

<u>"Displacement and</u> <u>Substitution"</u>

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Geopier System (GP3®) Construction

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Impact[®] Geopier Construction

Pre-stressing and pre-deforming the surrounding soils. (Over-consolidation)

Displacement Method - good for saturated sands and caving soils

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Impact® Geopier Construction

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Geopier Rigid Inclusions – Geo Concrete Column (GCC[®])

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

TERRATEST

Geo Concrete Column (GCC[®]) Construction

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Geo Concrete Column (GCC[®]) Design

- Design for both Structural and Geotechnical Performance
 - Structural is Function of unconfined Compressive Strength
 - Geotechnical is a function of skin friction and end bearing
- Use of an Expanded Head to reduce LTP.
- LPT and GCC are interdependent.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Thank you for your attention

2SGT2019 2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

A technology of soil improvement (almost) unknown in Portugal

José Luiz Antunes Keller Grundbau GmbH – Portugal Branch

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

588

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Content

- Concept
- Fields of Application
- Project Parameters
- Execution
- Monitoring
- Examples
- Conclusions

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Concept

Displacement injection

 Compaction grouting technology is based on the soil injection of a high consistency mortar, so that the injected mixture does not penetrate the ground, being concentrated around the injection point

The injected material fills the voids and **causes the lateral displacement of the soil**, densifying it and stabilizing it in the treated zone. The hardening of the mortar provides an **increase of resistance in the injected zone**

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

"column" made visible

Concept

• The vertical tension of the treated layer must ensure that the thick mortar moves the ground horizontally avoiding to cause surface heaves

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Application field

- In general, in soils with 4 <SPT <20
- Granular soils
- Dry cohesive soils or with low W%

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Application field

• Soil improvement.

Structural underpinning

Increase of bearing capacity

Cavities filling

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Application field

• Soil improvement.

Structural underpinning

Increase of bearing capacity

Cavities filling

LIQUEFACTION!

PLAN VIEW

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Design parameters

Injection volume ratio ٠

Injected volume

= 5 - 15%

Volume of treated soil

- Injection during drilling advance or tool withdrawal ٠
- Sequence of the drillings/injections in order to obtain the maximum possible soil confinement
- Drillings grid: 1.0 to 3.5 m
- Steps or stages of injection: 0,20 1,00 m

Steps

0,20 to 1,00 m

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Design parameters

Figure 1

- Injection pressure: between 5 and 30 bar
- High consistency mortar: Cone Abrams between 3 and 8 cm

Suggested Particle Size Distribution For

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting – Execution

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Execution

UPWARDS (*Bottom-up*)

DOWNWARDS (Top-down)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal |

Compaction grouting

Execution

Ending criteria for each step

- By volume
- By pressure
- By surface displacement
- By mortar reflux at the mouth of the hole

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Monitoring

- Systematic control of mortar by testing it with the Abrams Cone (Slump test)
- Control of execution parameters

COLUMNA 49

Control of movements (heaves) at the working platform or structure/foundation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Parameter monitoring

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Displacement monitoring at the surface

Rotary laser and rulers

Precision optical surveying

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Monitoring improvement results

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Monitoring improvement results

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Monitoring by excavation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Example 1

Change of the original load plan in an industrial unit

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Exemplo 1

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting Exemplo 1

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Example 2

Change in the surrounding conditions of an industrial warehouse due to loss of fines by water percolation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Example 2

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting Example 3

Rehabilitation of a road bridge after flood damage

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Compaction grouting

Conclusions

- > Wide range of treatable soils
- Treatment of soil in localized areas
- Quick installation and execution from the inside and/or outside of structures
- Possibility to work in limited spaces (headroom <3,0 m)</p>
- Suitable to apply in hard to reach places
- > Non-destructive process adaptable to the existing foundations
- Clean process does not generate spoil material
- > Does not require structural connection to the existing foundation
- Economic alternative when compared with other suitable indirect foundations or soil replacement

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Obrigado!

José Luiz Antunes jose.antunes@Keller.com

2SGT2019 2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Tratamentos de recalce de lajes com recurso a inclusões semi-rígidas por colunas de solo-cimento **Procedimento SPRINGSOL**

José Luis Arcos

Director Técnico Rodio Kronsa

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

614

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Tratamentos de recalce de lajes com recurso a inclusões semi-rígidas por colunas de solo-cimento. Procedimento SPRINGSOL

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Tipos de tratamentos de terreno com recurso a injecções de ligantes

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Tratamento do terreno por injecção, através da desintegração do solo e da execução da mistura de ligantes

SOIL-MIXING:

- Processo Básico:
 - O solo é desintegrado através de uma ferramenta mecânica
 - Incorpora-se um ligante hidráulico ao solo
 - Produz-se uma mistura de solo com ligante.
- Ligantes:
 - Cimento, Cal ou um outro ligante especialmente desenhado para uma determinada função
 - O ligante aplica-se em forma de pó ou líquido (pré-misturado com água), distinguindo-se assim o método seco do húmido;
- Resultado:
 - Obtém-se uma inclusão de solo-ligante em forma de coluna, em forma de elemento linear, de trincheira, parede ou painel rectangular,...

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Comparação entre colunas de Springsoil e colunas de jet-grouting

SPRINGSOL JET GROUTING SIMPLE

CO ₂ ,	
Energía	
Transporte	
Agua	
Residuos	
Rechazo	
Materiales	

	Jet Grouting	Soil Mixing				
Desintegração	Energia hidráulica (caudal de calda sob pressão)	Energia mecânica (braços cortantes				
Geometria	Incerta, diâmetro limitado pela energia	Conhecida, diâmetro limitado p ferramenta mecânica				
Quantidade de produtos sobrantes	Grande	Reduzida				
Riscos de Sobrepressão	Possibilidade de sobrepressões (por obturação da saída de calda) provocando a expansão do terreno	Praticamente nulos				
Características (Rc, K)	terísticas (Rc, K) Função do caudal e do terreno Função do caudal e do terreno ⁶²⁰					

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Tipos de tratamento do terreno por desintegração e execução da mistura com ligante

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Trenchmix

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Procedimento SPRINGSOL.

Inclusões semi-rígidas. Colunas Springsol.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Classificação do Springsol dentro dos métodos de Soilmixing:

- Forma de aplicação do ligante: (Wet), mistura por via húmida com calda de cimento;
- Método de mistura: Eixo vertical rotativo com aletas na extremidade inferior das varas;
- Ponto de inserção do ligante no extremo inferior

	Métodos de soil-mixing de ejecución in situ.										
	\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow
Conglomerante en polvo o en lechada	Mezcla en seco (conglomerante en polvo)		Me zc la e	Mezcla en húmedo conglomerante mezclado o					con agua en forma de lechada)		
	\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow
Desestructuración mecánica o con jet			Mezclado	o n	necánico				Mezclado mecánico + Jet		Mezclado por Jet
	\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow
Punto de mezclado del conglomerante	En el extre perfo	em ora	no del eje ador		A lo largo de l	e.	je perforador		En e l extremo de l e je perforador		
	\downarrow		\downarrow		\downarrow	_	\downarrow		\downarrow		\downarrow
Ejemplos, Denominaciones representativas, Origen	-DJM Assoc (Japón), -Nordic Method (Suecia, Finlandia), -TREVIMIX (Italia), -SMM: Mass stabilisation (Japan, USA)	<	-CDM Assoc (Japón), -CSCC (Japón), -SSM (USA), -SSM (USA), -KS (USA, Europe), -MECTOOL (USA), -SMM Mass Stabilasation (Japón, USA), -SPRINGSOL (Francia, España)		-SMW (Japón, USA), -DSM (USA), -MULTIMIX (Italia, USA), -COLMIX Soletanche- Bachy (France), -Bauer Triple auger system (Alemania).		Zanjadoras: - FMI (Alemania), -TRENCHMIX (seco y húmedo) (Francia, Polonia, UK) -Fresadoras "cutters" -CSM, GEOMIX Francia, Alemania)		-SWING (Japón), -JACSMAN (Japón), -GEOJET (USA), -HYDRAMEC (USA), -TURBOJET (Italia)		(Fuera de l alcance de este artículo) -Jet Simple, -Jet Doble, -Jet Triple, -Superjet, -JetPlus, -Crossjet
	\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow
Eje rotativo, Herramienta base original	Eje rotativo vertical, Aspas en el extremo inferio r del eje		Eje rotativo vertical, Aspas en el extremo inferior del eje		Eje rotativo vertical, Hélices continuas solapadas		Eje rotativo horizontal, Zanjadora de cadena de canjilones o Hidrofre sa (doble tambor)		Eje vertical	21	Eje vertical

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Parâmetros que determinam o processo de execução das colunas de Soilmxing

Índice de Mezcla, I _m (1/m)	$\begin{split} I_m = N \cdot \frac{\omega_{rot}}{U_{perf}} ; \\ \bullet N = \text{número de aletas de mezclado} \\ \bullet \omega_{rot} = \text{velocidad de rotación de la herramienta (1/s)} \\ \bullet U_{perf} = \text{Velocidad de avance en la perforación (m/s)} \end{split}$
Índice de incorporación, I_i (kg/m ³)	$\begin{split} I_i = \frac{Wc}{Vs} = \frac{Cco \cdot Q}{\frac{\pi \cdot \Phi^2}{4} \cdot U_{perf}} ; \\ \bullet Wc = \text{Consumo de cemento por unidad de tiempo (kg/h)} \\ \bullet Vs \; \omega_{rot} = \text{Volumen tratado por unidad de tiempo (m^3/h)} \\ \bullet Cco = \text{kg de cemento por m}^3 \text{ de lechada (kg/m}^3) \\ \bullet Q = \text{Caudal de lechada suministrada (m}^3/h) \\ \bullet \Phi = \text{diámetro de la columna tratada (m)} \\ \bullet U_{perf} = \text{velocidad de avance de la perforación (m/h)} \end{split}$

2SGT20192nd Seminar on Transportation Geotechnics
Soil Improvement Challenges in Alluvial Zones
28-29 January 2019 | Vila Franca de Xira | Portugal

Balance de masas en el proceso de mezclado:

Atención!!! A tener en cuenta en las correlaciones de resistencia:

- El cemento remanente en la columna tratada, es el aportado menos el evacuado en el rechazo.
- El agua del material suelo-cemento es en parte procedente de la que aporta la lechada y la ya existene en el terreno)

629

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Resistência do material em função do tipo de terreno

As correlações habituais não têm em conta a influência do teor de água do terreno, pelo que devem sempre confirmar-se com ensaios.

Soil type	Cement factor,	U.C.S. 28-d
	a [kg/m³]	q _{uf} [MPa]
Sludge	250 - 400	0.1 - 0.4
Peat, organic silts/clays	150 - 350	0.2 - 1.2
Soft clays	150 - 300	0.5 - 1.7
Medium/hard clays	120 - 300	0.7 - 2.5
Silts and silty sands	120 - 300	1.0 - 3.0
Fine-medium sands	120 - 300	1.5 - 5.0
Coarse sands and gravels	120 - 250	3.0 - 7.0

Permeabilidade:

1×10⁻⁷ a 1×10⁻⁹m/s

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Produto resultante do Springsol:

- **Geometria** perfeitamente definida (garante o cumprimento do diâmetro da coluna)
- Resistência dependente da natureza do terreno a tratar, do seu teor de água terreno, da relação água-cimento da mistura de ligante e da dosagem de cimento resultante no terreno tratado.
- Comportamento semelhante ao de uma inclusão semi-rígida no terreno não tratado, podendo o terreno tratado ser estudado como um todo através de propriedades homogeneizadas, ou considerar-se a interação individual da coluna com o terreno envolvente.
- Evolução da resistência do material solo-cimento mais lenta que argamassas e betões e continua a ser incrementada para além dos 28 dias, sendo habitual falar-se de resistências de 90 dias.
- Permeabilidade muito baixa, entre 1×10⁻⁷ e 1×10⁻⁹m/s sendo importante criar barreiras impermeáveis ao fluxo da água no terreno através de colunas sobrepostas.

Tipo de solo tratado	Rc 90/ Rc 28	E/R _{c28}
Coerente	1.3 – 1.5	100 – 300
Granular	1.5 – 2.0	300 - 600

Estudio de las características del material durante la construcción

Propiedades del material (Rc, permeabilidad, ...) Tomadas después del endurecimie6601

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

RODIO-KRONSA CÁLCULO	SPRIN	IGSOL					RK
1 Composición del terreno							4010 XIIO/3
Peso específico de los Finos y evacuab	nies,		Dae =	27,1	kN/m ³	2762	kg/m ³
Densidad aparente,			Dap =	20,0	k/s/m ³	2039	kg/m ³
Densidad seca,			Dsec =	18,0	kN/m ²	1835	kg/m ²
indice de poros,	8 = "	60,56%					
humedad,	e_=	30,11%	W =	11,196	Sr =	59,6%	
huecos vacios (aire)	0 =	20,44%					
Contenido de gruesos (no evacuables)	410	an	uesos =	20%	(no pa	sa tamiz)	
Concentración de agua en 1 m³ de suel	0:	1.52	Aco =	2,22	kN/m ³	227	Kg/m²
2 Dosificación de la lechada d	e cem	ento					
Peso del agua/cemento; (Pa / Pc)		100	100	Kg			
Relación agua / cemento:		K=	1.00				
Peso específico cemento:		Dcem=	31	kN/m ³	3160	kg/m ^a	
Densidad de lechada:		DI =	15,12	kN/m ³	1541	kg/m ^a	
Kg de cemento en 1 m ³ de lechada	AC .	Cco =	7,56	kN/m ³	771	kg/m?	
3 Caudal de aporte de lechada	a en fu	neión de	e velo	cidad d	e pert	oración	10
Velocidad de Perforación,		Uperf =	30,00	cm/min	3,33	min/m	
Giro en la perforación (50rpm aconseja	das),	Wrot=	60	rpm			
Número de aspas,		N =	2		6.0	mm/rev	
Índice de mezcla,	E	Imox =	333	cortes/m	3,0	mm de re	banad
Diametro de Columna,	100	Diām =	40	cm	0,40	m	
Volumen de 1ml de columna (sección)		Vo=	0,126	m³/ml			
Indice de incorporación (dosificación aportad	ŵ.	1) =	220	kg/m³	(cement o	um ^a de suelo	a tratar)
Caudal a iny	ectar,	Q =	10,8	I/min			
Por metro lineal de columna:		172601037	0000000				
kg Cemento por metro lineal		Do =	27,6	kg/ml			
Volumen introducido de lechada,		VIE	35,9	litros/mi			
3 Composición del rechazo			_				
Volumen evacuado,		Vr =	18,8	litros/ml	5,6	litros/min	
Densidad del rechazo,		Dr =	20,3	kN/m ³			
Velocidad ascensional del rechazo;	Charles and	Uar =	4,49	cm/min			
 Composición de material en 	colum	ina (suel	o trata	ido)	-	and the design	
Gruesos no evacuados							_

Determinação da soilmixing - Springsol:

Ponderação das massas para estimar a dosagem final de cimento na coluna tratada

Índice de Incorporação

(em função do tipo de solo e da resistência final requerida)

Índice da Mistura:

Gruesos no evacuados Contenido de cemento en e	el suelo tratad	_	Mínimos ratios de mezcla mix = N	N*Uperf/Wrot,	según tipo de suelo	Granular	Cohesivo	
Minimos ratios de mezcla limix =	N*Uperf/Wrot, s	egú		mix =	[cortes/metro]	100 a 150	200 a 250	
	mix =	[C	corresimential 100 8 200 - 200 8 300				052	
2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Procedimento SPRINGSOL. Tipos de ferramentas

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Ferramenta Springsol de mola pneumática Diâm. 400 -600mm

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de aterro ferroviário como inclusão rígida

Execução entre travessas

Sem contaminação da camada de balasto

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de recalce de lajes

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de recalce de lajes Trabalhos concluídos no interior das salas intervencionadas

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de soleira de um Centro Comercial

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de aterro Aterro na linha férrea de Linares-Almería

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de talude de um aterro instável

Aterro numa plataforma fotovoltaica em Sevilha

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de fundações de um tanque de ácido sulfúrico (Bilbao)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Springsol® aplicado no tratamento de maciço e impermeabilização do terreno

Springsol® em Lisieux , Francia (Ano 2012) para tratar solo contaminado

Springsol® aplicado no tratamento de impermeabilização e consolidação da frente de uma escavação subterrânea (Singapura)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Equipamento necessário para a execução de colunas de solo-cimento Springsoil

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Sistema de monitorización y registro de parámetros para la recopilación de datos y posterior tratamiento informático, para cada columna.

VOLUMEN

(I/m)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Vantagens do Soilmixing, relativamente a outros métodos de tratamento por injecção

- Economia, para a mesma finalidade, os consumos de ligante são muito inferiores aos consumos requeridos noutras técnicas. Em particular, relativamente à técnica de Jet-Grouting, para se conseguir a mesma coluna de solo-cimento, os consumos podem ser da ordem dos 25%.
- Sustentabilidade, (utiliza o próprio solo como material de construção). Diminuição de consumo de material e, por exemplo, relativamente ao Jet-Grouting verifica-se uma redução dos resíduos sobrantes.
- Geometria conhecida com exatidão, ao contrário de outras técnicas de tratamento por injecção, a geometria do elemento tratado é conhecida. Nas injecções de calda sob pressão e na técnica de jet-grouting, o diâmetro de afectação é sempre uma incógnita.
- Possibilidade de registo de parâmetros de execução e automatização dos procedimentos.
- Controlo dos reduzidos resíduos gerados através de sistemas de captação desenhados para esse fim.

2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

Biocementation by Biocalcis, from design to site implementation

Annette Esnault Filet¹ & Jorge Paulino²

1 : annette.esnault@soletanche-bachy.com

2 : jorge.paulino@rodio.pt

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

649

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Example of K vs Calcite content

Computed volume fration of calcite (%)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

BIOCALCIS®

Anti-liquefaction soil treatment

Erosion control (suffusion – internal erosion) Maritime structures – quay walls Restoration of reinforced earth structures Foundations Embankments

Old masonry restoration

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Niigata, Japon, 1964 Magnitude 7.5 Richter

LIQUEFACTION

Séisme de San Fernando 1971

Séisme de Tohoku 2011

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

MECHANICAL PROPERTIES OF CALCIFIED MATERIAL (examples)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

MECHANICAL PROPERTIES BOREAL PROJECT : application on dykes (EDF, CNR)

- Mechanical properties enhanced by the treatment (modulus, cohesion,...)
 - Improvement of liquefaction curve
- Laboratory trials :
 - No liquefaction occurs even for low calcite levels

Après essai

Essais EDF -CEMETE

BOREAL PROJECT : application on dykes (EDF, CNR)

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Anti-liquefaction soil treatment

- Commercial targets:
 - existing structures: « update » following new rules and values for seismic design (i.e. Eurocode)
 - new structures
- Usual (standard) solutions:
 - Geomix or Trenchmix (soil-mixing) caissons
 - Jet Grouting
 - Stone columns
 - Various soil improvement techniques (vibro-compaction, traditional compaction)
 - ...

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Example : Switzerland – Industrial Site

- Anti-liquefaction treatment under existing silos constructed on deep foundations (piles) → major constraints: very small working space (reduced height) &
- presence of deep foundations and
- underground cables and pipes
- Treatment of « Alluvions Modernes »:
- . between -3.5m et -9.5m
- . surface 16m x 16m
- Design office defined soil parameters to be
- obtained:
- . cU and / or UCS

Example : Switzerland – Industrial Site

Anti-liquefaction soil treatment

- Advantages compared to usual (standard) solutions :
 - Homogenous soil treatment : "mass" treatment
 - → Values of cu / UCS to be obtained are smaller than those needed for soil mix solutions (as those are discontinuous)
 - No piling/excavation tool
 - → Very small diameter injection boreholes : reduced risk of damage to the existing foundations and underground cables and pipes & limited damage (= deconstruction) of existing base slab

Design approach & target properties of treated ground

Soil is transformed in coherent soil mass characterized by its unconfined compression strength (UCS)

- Estimation of mechanical characteristics based on correlations between UCS and undrained cohesion, limit pressure, modulus
- Hydraulic characteristics:

UCS \leq 500 kPa \rightarrow no significant change in permeability

UCS \geq 1000 kPa \rightarrow reduction in permeability but due to cost of high resistance injection this application has not been targeted for now

Target properties of treated ground : design will define value of UCS needed for required soil resistances

Then depending on the target UCS value and soil characteristics (porosity, density) the process will be adapted

28-29 January 2019 | Vila Franca de Xira | Portugal

Implementation design

Specific Modelling tools

2**SGT**2019

Hydraulic Modelling

Optimisation of grouting grid and injection parameters according to K, Porosity, etc.

 $\label{eq:couple} Couple \ Solute \ transport \ with \ Darcy's \ law \ (ex \ COMSOL \ Multiphysics):$

2nd Seminar on Transportation Geotechnics

Soil Improvement Challenges in Alluvial Zones

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

A3 test : Injection in sandy gravels

Extraits du bloc 3D des vitesses sismiques en onde S de la phase 2

Z=0,5 m

Z=1 m

Z=1.5 m

665

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

THANK YOU FOR YOUR ATTENTION

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

SYNTHESE DES RESULTATS POST TRAITEMENT

La biocalcification : un procédé biologique innovant

Projet de Recherche et Développement 2014 - 2018

Extrait film CNR

2nd SEMINAR ON TRANSPORTATION GEOTECHNICS Soil Improvement Challenges on Alluvial Zones

28-29 January 2019 | Vila Franca de Xira | Portugal

ANCHORED HIGH PERFORMANCE TURF REINFORCEMENT MAT FOR SLOPE STABILIZATION

Randy Thompson, P.E.

Propex Geosolutions

Organização

Comissão Portuguesa de Geotecnia nos Transportes

Comissão Portuguesa de Geossintéticos

Apoios

ORDEM DOS ENGENHEIROS

668

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Agenda

- Products and Solutions
- Slope Stability Design
- Case Study
- Questions and Discussion

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Surficial Slope Stabilization with the ARMORMAX System

- Engineered Earth Anchors are designed to provide resistance to shear and lateral forces, and embedded beyond the predicted plane of failure
- HPTRM distributes loads amongst anchors while providing a continuous compressive cover
- HPTRM is also permeable for pore pressure relief and promotes vegetative establishment

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Surficial Sloughing is often Incorrectly Treated as Erosion

These two photos are examples of a shallow plane slope failure that ARMORMAX could be used for the repair. Attempted repairs with erosion control blankets and low strength TRMs were unsuccessful.

Surficial Sloughing

- A shear failure in which a surficial portion of the embankment moves downslope is termed a surface slough.
- Surface sloughing is considered a maintenance problem, because it usually does not affect the structural capability of the embankment.
- However, repair of surficial failures can entail considerable cost.
- If such failures are not repaired, they can become progressively larger, and may then represent a threat to embankment safety.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX 75 for Slope Stabilization Problem Areas for Consideration

A small landslip of the embankment threatening the stability of the track foundation. Along with correcting drainage issues, ARMORMAX 75 is evaluated through a geotechnical design to correct this type of failure.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX 75 for Slope Stabilization Problem Areas for Consideration

towards the track after a period of relatively normal rainfall. Failure identified by the driver of a passenger train travelling at 125mph.

The slumped slope above is typical of the type failure that ARMORMAX can be engineered to stabilize. Using soil nails to repair this shallow plane slope failure is overkill, expensive, and slow. Perhaps, a more traditional repair is to use the added weight of rip rap to stop the slope from slumping.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Surficial Stability Equation

Resting Forces > Driving Forces (Factor of Safety greater than 1.0) = slope stability Resting Forces < Driving Forces (Factor of Safety less than 1.0) = slope instability

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX System for Slope Stabilization

- GeoStudio's 2016 Slope/W Software
 - Slope stability determined through vertical slice limit equilibrium methods for given project conditions
 - Software determines, anchor size, drive depth, and frequency of installation
 - Minimum acceptable factor of safety (FS) for a slope under normal long-term loading conditions is 1.5
 - Under rapid drawdown conditions, FS =1.1

Anchor Driving with a Percussion Hammer

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Design Case History: Madalena Rail Station, Vila Nova de Gaia, Portugal

The picture on the left shows an aerial view of the Madalena Station and the picture on the right shows the slope to be redesigned to accommodate a wider and safer loading platform.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Design Case History: Madalena Rail Station, Vila Nova de Gaia, Portugal

1.15H:1V Unreinforced Slope; F.S.= 0.84

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Design Case History: Madalena Rail Station, Vila Nova de Gaia, Portugal

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Design Case History: Madalena Rail Station, Vila Nova de Gaia, Portugal Construction in 2019

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Installation Details

Re-grade the failed slope with the "sloughed" material Shape the slope by removing objects that would prevent the ARMORMAX making intimate contact with the soil 2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Installation Details

Unroll the High Performance Turf Reinforcement Mat on the prepared slope

Atlanta International Airport, USA

USACE Hurricane Protection Levee, New Orleans, Louisiana, USA

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Installation Details

Driving anchor with a breaker hammer mounted to an excavator

Manually driving anchor 2.5m (8') deep with 16kg (35#) air hammer on a steep slope

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Installation Details

- Anchor is Load Locked to develop a Frustum Cone using a JackJaw.
- When a load is applied, the anchor will rotate in the ground by up to 90° and load lock.
- As the load exerted on the soil increases, a body of soil above the anchor is compressed and minimizes any further anchor movement. The size of the developed cone depends on:
 - The shear angle of the soil
 - The size of the anchor
 - The depth of installation
 - The load applied

JackJaw Anchor Setting Too

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Installation Details

FIGURE 4: TYPE B2 ANCHOR / PIN PATTERN DETAIL FOR SLOPE FACE

Specified Anchoring Pattern

- Spacing of 1.2m (4') in the 'X' direction, 1.5m (5') in the "Y" direction
- 150mm (6")overlap for HPTRM panels
- Pattern staggered to secure HPTRM efficiently
- Spacing and density modeled in slope stability software

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Finishing the ARMORMAX Installation

Top left: Hydro seeding on top of soil fill; **Bottom left**: placing turf; **Right:** Blown Fiber Matrix (BFM) and slope seed mixture

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX and Soil Nail Combination in <u>Alluvial Soils</u> Case History: Metal Art Museum

- Application: Vegetated Slope Stabilization
- **Client:** City of Memphis, TN
- Installed: 2009
- Product: ARMORMAX[®]
 - 1.8m (6') Type B2 Anchors
 - 0.5 anchors per square yard
 - 0.6 anchors per square meter
- Quantity: 3,000 SY (2,500 SM)
- Scenario: Slope rehabilitation for museum hillside

Replacement of failing gabion basket slope reinforcement

Vegetated solution desired adjacent to Mississippi River

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX and Soil Nail Combination in Alluvial Soils Case History: Metal Art Museum

Original Design: 20m long soil nails on a 1.5m x1.5m pattern

Value Engineering Proposal utilized ARMORMAX to increased soil nail spacing to 2.4m x 2.4m

Close proximity to existing building, combination of rigid tendon anchors and deep soil nails

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX and Soil Nail Combination in Alluvial Soils Case History: Metal Art Museum

Anchor load testing and driving with percussion hammer

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX and Soil Nail Combination in Alluvial Soils Case History: Metal Art Museum

Small equipment used facilitating construction in limited easements ⁶⁹⁰

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX and Soil Nail Combination in Alluvial Soils Case History: Metal Art Museum

Hydro-seeding atop HPTRM with Blown Fiber Matrix (BFM) and slope seed mixture $_{\rm 691}$

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX and Soil Nail Combination in Alluvial Soils Case History: Metal Art Museum

Finished Installation

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX: Other Considerations Propex Project Experience Worldwide

A Portfolio of Performance Supporting the use of this Technology

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX: Other Considerations Performance in Wildfire Prone Areas

- FOFEM First Order Fire Effects Model for predicting tree mortality, fuel consumption, smoke production, and soil heating caused by prescribed fire or wildfire.
- Measured soil heat profiles during 60 experimental burns, identifying changes in maximum soil temperature and heat duration as a function of soil moisture and soil texture.
- Underlying soils having 20% volumetric moisture or greater is an effective means for limiting lethal heating in a variety of soils.
- PYRAMAT normally placed under 2.5 cm (1") of soil cover. In wildfire prone areas, consider using 7.5 to 15 cm (3 to 6") of soil cover.

*Soil Science Society of America Journal Abstract - FOREST, RANGE & WILDLAND SOILS, Soil Physical Properties Regulate Lethal Heating during Burning of Woody Residues

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

ARMORMAX Summary for Slope Stability Solutions

ARMORMAX Reinforced Vegetated Slope may Replace the Above Traditional Methods or be used in Combination with the Above Solutions to Improve Performance

- Proven through an engineering design
- Generally at least half the installed cost of traditional solutions
- Portfolio of performance on projects around the world
- Strong environmental argument to reduce carbon on construction projects
- Installs more quickly with small equipment minimizing work zone danger

Propex Propex is an International Company that GEOSOLUTIONS has been in business for over 100 years

*Picture is taken from Network Rail, Earthworks Technical Strategy, June 2018.

2nd Seminar on Transportation Geotechnics Soil Improvement Challenges in Alluvial Zones 28-29 January 2019 | Vila Franca de Xira | Portugal

Conclusion Project Discussion and Questions

Randy Thompson, P.E. International Director of Market Development Propex Geosolutions randy.thompson@propexglobal.com

Ron Sutton, Director of Export Sales Geosynthetics ron.sutton@propexglobal.com

Stuart Pywell Business Development, Portugal sgpywell@gmail.com

Embankment, Staffordshire, England

River Bank, Timbúes, Argentina

Slope Protection, Bogota, Columbia

